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Operator algebras

For a Hilbert space H and a linear map T : H — H, we denote by || T| its norm. Recall that

| T =sup{[ TE[ | S e, €] <1}
The set B(H)={T :H — H is a linear map | | T| < oo} is called the set of bounded

operators on .

Definition
We consider *-subalgebras M c B(#), where the x-operation is the Hermitian adjoint.

» C*-algebras: norm closed *-subalgebras of B(#).
~ Unital commutative C*-algebras are of the form C(X) where X is compact Hausdorff.
» von Neumann algebras: weakly closed *-subalgebras of B(H).
~ T; - T weakly if and only if (T;£,n) = (T&,n), for all £,neH.
~ Commutative von Neumann algebras are of the form L*° (X, u) where (X, ) is a
measure space.

Close connections to group theory, representation theory, (continuous and measurable)
dynamical systems, quantum information theory, etc.



More on von Neumann algebras

A x-subalgebra M c B(H) is a von Neumann algebra if it is closed in the weak operator
topology.

Q B(H), where H is a Hilbert space.
Q@ L>=(X)c B(L%(X)), where (X, ) is a measure space.
o

The commutant A’ := {x € B(H)| xa = ax, Va e A} of any set A c B(H) that is closed
under adjoint.

@ von Neumann’s bicommutant theorem:
If M c B(H) is a unital =-algebra, then M is a von Neumann algebra if and only if
M= (M.




Discrete groups and operator algebras

Group C*-algebras and group von Neumann algebras

Let I be a countable (discrete) group.
> The left regular representation \: T — U(£2(T)): (A\g€)(h) =&(g7th).
> The group algebra C[I'] is the linear span of {\z}ger and note that C[I'] ¢ B(¢2(T)).
» Take the norm closure: (reduced) group C*-algebra C;(I').

» Take the weak closure: group von Neumann algebra L(I").
We have C[I'] c C}(T) c L(T).

Remark. At each inclusion, information gets lost ~» natural rigidity questions.

Open problems

> Free group factor problem: is L(IF,,) £ L(Fy,) if n+ m?
» Connes' rigidity conjecture: is L(PSL,(Z)) % L(PSLy(Z)) if n# m?

The structure and classification of operator algebras is highly non-trivial.



Dynamical systems and operator algebras

Measurable dynamics and von Neumann algebras

A measure preserving action I ~ (X, i) gives rise to a von Neumann algebra L*(X) xT.

» This von Neumann algebra contains L*°(X) as a subalgebra.
> It contains I as unitary elements {ug}gcr and encode the group action: ugFu; =g - F.

Orbit equivalence and W*-equivalence

Two measure preserving actions I ~ (X, ) and A ~ (Y,v) are called:
> conjugate: 3 a group isomorphism 0 : [ - A and a measure preserving isomorphism
A:X > Y st A(gx)=0(g)A(x).
> orbit equivalent: 3 a measure preserving isomorphism A: X — Y s.t. A(I'x) = AA(x).
» W*-equivalent: L*(X)xT 2 L®(Y)xA.

We have conjugacy ~ orbit equivalence ~ W*-equivalence.

Remark. At each step information gets lost ~» natural rigidity questions.



Classification of von Neumann algebras

To what extent do L(I') and L*°(X) x T “remember” the underlying group ' and group action
I~ (X, p), respectively?

Remark. T infinite abelian — L(I') = L=°(", Haar) = L°([0,1], Leb).
Terminology. A von Neumann algebra M is a factor if M £ My & M.

Proposition
» L(T) is a factor if and only if [ has infinite conjugacy classes (icc).
Example. Wreath product groups ' = A: B := AB) x B, free product groups A * B.

» L=(X) xT is a factor if [ ~ (X, u) is free and ergodic.
Example. The Bernoulli action I ~ (Xo, 110)" defined by g - (x)per = (Xg-1p) her-

Murray and von Neumann, 1936-1943:
weakly

© 3! approximately fin. dim. factor R = ® ey M2(C)
@ L(F,) £ R, where F is the free group on two generators.

(the hyperfinite Il factor).



The amenable case

Definition

A group I is amenable if its left regular representation admits almost invariant vectors, i.e.
there is a sequence of unit vectors (&,), c £2(T") such that [Ag(&,) = &nfl2 = 0, for any g eT.

Examples. Solvable (e.g. abelian) groups.
Remark. To see that Z is amenable, take &, = %1{1,27.”7”} € (2(Z) and note that

| Am(€n) —€nl3 = 27'” — 0 as n— oo, for any me Z.

Theorem (Connes, 1976)

» L(I') 2 R, for every icc amenable group .

» L*(X) xT 2 R, for every free ergodic action I' ~ (X, ) of an infinite amenable group.

Remark.

» Striking lack of rigidity: any info of I' is lost when passing to von Neumann algebras.

» The classification of amenable C*-algebras is still very active (Stuart White, Wilhelm
Winter, etc.).



The non-amenable case

Definition

A group I has Kazhdan’s property (T) if any unitary representation of I with almost
invariant vectors has non-zero invariant vectors.

Examples. Lattices in higher rank simple Lie groups, e.g. SL,(Z),n > 3.

Connes, 1980: If I is an icc property (T) groups, then any automorphism of L(I") that is
close to the identity is inner.

Connes' rigidity conjecture, 1980s
If I and A are icc property (T) groups with L(I') 2 L(A), then I 2 A.

Cowling-Haagerup, 1989: If I < Sp(m, 1) and A < Sp(n,1) are uniform lattices such that
L(T") 2 L(N), then m = n.

Popa’s strong rigidity theorem, 2004: If G; = Z/2Z:T; where [; is an icc property (T)
group for any i € {1,2} with L(G1) = L(Gy), then G 2 G,.



Popa’s deformation /rigidity theory and W*-superrigidity

Definition

A group I is called W*-superrigid if whenever L(I") = L(A) for some group A, then [ = A.

Remark. Property (T) is a group von Neumann algebra invariant: if L(I') 2 L(A) with T has
property (T), then A has property (T) as well.
Connes’ rigidity conjecture, 1980s: Any icc property (T) group I is W*-superrigid.

» Famous open problem (e.g. I = PSL3(Z)).

Popa's deformation /rigidity theory (2001-)

General idea: Study von Neumann algebras M that have a

» deformation property (e.g. Aut(M) is large).

> rigidity property (e.g. M = L(X:T), where I has property (T)).
Combine these properties to derive structural results for M.

» Led to spectacular progress in the theory of von Neumann algebras and orbit equivalence.
» In particular, it led to the first examples of W*-superrigid groups.



W*-superrigidity: examples

The generalized wreath product group X 3 [ is ¥ %, T, where T ~ [ and
Ug((Xi)ie/) = (ngli)iel-

Examples of W*-superrigid groups

loana-Popa-Vaes, 2010: Certain generalized wreath product groups (I = Z/2Z /g K).
Berbec-Vaes, 2012: Left-right wreath product groups Z/2Z p, (F, x Fj).
Chifan-loana, 2017: Certain amalgamated free product groups (I' =1 5 I2).
Chifan-Diaz-D, 2020: Iterations of certain amalgamated free product groups and
HNN-extension groups (e.g. ' =Ty %y 2 %5 -+ %y ) are W*-superrigid.
Chifan-loana-Osin-Sun, 2021: The first examples of icc property (T) groups that are
W*-superrigid.




W*-superrigidity: functorial results

Is the W*-superrigidity property closed with respect to direct products?
~ Yes, if the groups are wreath product groups.

Theorem (D, 2020)
If [ and ' are W*-superrigid wreath product groups, then 'y x 'y is W*-superrigid.

» Main ingredient (product rigidity result):
Let 1,2 be non-amenable wreath product groups and A any group for which
L(Fy xT) = L(A). Then A =A1 x Ay such that L(I1) = L(A1) and L(T2) = L(A2).

Theorem (Chifan-Diaz-D, 2021)
Let I' be an icc property (T) hyperbolic group. If A is any W*-superrigid group, then the
left-right wreath product group Az (I x ') is W*-superrigid.




Superrigidity for graph product groups, |

Graph product groups (Green, 1990)

Let 4 = (¥, &) be a finite simple graph. To any family of groups {I',},cy, one can naturally
associate the so-called graph product group 4{I',},cy.

> G{T}ver = xver Ty if 4 is complete.
» G{T, ey = *vey Ty if 4 has no edges.

Does there exist a non-trivial graph product group that is W*-superrigid? I




Superrigidity for graph product groups, |l

Theorem (Chifan-Davis-D, 2023)

For certain graph product groups I' = 4{l', } ,cy, where ¢ is a flower shaped graph, the

following holds: if L(I") = L(A), where A is any non-trivial graph product group whose vertex
groups are infinite, then I = A.

Figure: Flower shaped graph



Future questions

Problem

Identify new group constructions that are “recognizable” at the von Neumann algebra level.

Problem

Q Prove that L(PSL,(Z)) ¢ L(PSLm(Z)), whenever m # n.
@ Show that PSL,(Z) with n> 3 is W*-superrigid.




W*-superrigidity for group actions

Consider the Bernoulli action I' ~ (X, j10)" defined by g - (xp)per = (Xg-1h) her -
> If I is amenable, then L*(Xp)" » I is isomorphic to the hyperfinite Il; factor R.

Popa'’s strong rigidity theorem, 2004

Let I' be a non-amenable icc group and I ~ (X, 1) a Bernoulli action. Let A be a property (T)
group and A ~ (Y, v) a free ergodic action.
If L(X) % 2L*(Y)xA, then I 2 A and the actions are conjugate.

Definition
A group action I ~ (X, u) is called W*-superrigid if whenever L= (X) x T = L*(Y) x A for
some free ergodic action A ~ (Y,v), then I' 2 A and the actions are conjugate.

\

Theorem (Popa, 2003; loana, 2010; loana-Popa-Vaes, 2010)

If I is an icc non-amenable group such that ' has property (T) or I' =1 x ', then any
Bernoulli action T ~ (Xo, o))" is W*-superrigid.




W*-superrigidity for actions on the hyperbolic plane

Consider the transitive infinite measure preserving action PSLy(R) ~H? = {z € C| Imz > 0} on
the hyperbolic plane by fractional transformations:

a b az+b
‘Z= .
c d cz+d

Theorem (D-Vaes, 2021)

Let I = PSLy(Z[S7']), where S is a finite set of primes. The following hold:
Q If S=o, then [ ~H? admits a fundamental domain.
Q If |S| =1, then L°(H2) xT = L®(Y) % A for uncountably many non-isomorphic A.

Q If |S|>2, then T ~H?2 is W*-superrigid: if L>°(H?) x = L*(Y) x A, we essentially have
[~ A and the actions are conjugate.

» The first natural families of infinite measure preserving actions that are W*-superrigid.




