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Operator algebras

For a Hilbert space H and a linear map T ∶H →H, we denote by ∥T ∥ its norm. Recall that
∥T ∥ = sup{∥T ξ∥ ∣ ξ ∈H, ∥ξ∥ ≤ 1}.
The set B(H) = {T ∶H →H is a linear map ∣ ∥T ∥ <∞} is called the set of bounded
operators on H.

Definition

We consider ∗-subalgebras M ⊂ B(H), where the ∗-operation is the Hermitian adjoint.

▸ C∗-algebras: norm closed ∗-subalgebras of B(H).
↝ Unital commutative C∗-algebras are of the form C(X ) where X is compact Hausdorff.

▸ von Neumann algebras: weakly closed ∗-subalgebras of B(H).
↝ Ti → T weakly if and only if ⟨Tiξ, η⟩→ ⟨T ξ, η⟩, for all ξ, η ∈H.
↝ Commutative von Neumann algebras are of the form L∞(X , µ) where (X , µ) is a
measure space.

Close connections to group theory, representation theory, (continuous and measurable)
dynamical systems, quantum information theory, etc.



More on von Neumann algebras

A ∗-subalgebra M ⊂ B(H) is a von Neumann algebra if it is closed in the weak operator
topology.

Examples

1 B(H), where H is a Hilbert space.

2 L∞(X ) ⊂ B(L2(X )), where (X , µ) is a measure space.

3 The commutant A′ ∶= {x ∈ B(H)∣ xa = ax ,∀a ∈ A} of any set A ⊂ B(H) that is closed
under adjoint.

4 von Neumann’s bicommutant theorem:
If M ⊂ B(H) is a unital ∗-algebra, then M is a von Neumann algebra if and only if
M = (M ′)′.



Discrete groups and operator algebras

Group C∗-algebras and group von Neumann algebras

Let Γ be a countable (discrete) group.

▸ The left regular representation λ ∶ Γ→ U(ℓ2(Γ)): (λgξ)(h) = ξ(g−1h).
▸ The group algebra C[Γ] is the linear span of {λg}g∈Γ and note that C[Γ] ⊂ B(ℓ2(Γ)).
▸ Take the norm closure: (reduced) group C∗-algebra C∗r (Γ).
▸ Take the weak closure: group von Neumann algebra L(Γ).

We have C[Γ] ⊂ C∗r (Γ) ⊂ L(Γ).

Remark. At each inclusion, information gets lost ↝ natural rigidity questions.

Open problems

▸ Free group factor problem: is L(Fn) ≇ L(Fm) if n ≠ m?

▸ Connes’ rigidity conjecture: is L(PSLn(Z)) ≇ L(PSLm(Z)) if n ≠ m?

The structure and classification of operator algebras is highly non-trivial.



Dynamical systems and operator algebras

Measurable dynamics and von Neumann algebras

A measure preserving action Γ↷ (X , µ) gives rise to a von Neumann algebra L∞(X ) ⋊ Γ.

▸ This von Neumann algebra contains L∞(X ) as a subalgebra.

▸ It contains Γ as unitary elements {ug}g∈Γ and encode the group action: ugFu
∗
g = g ⋅ F .

Orbit equivalence and W∗-equivalence
Two measure preserving actions Γ↷ (X , µ) and Λ↷ (Y , ν) are called:

▸ conjugate: ∃ a group isomorphism δ ∶ Γ→ Λ and a measure preserving isomorphism
∆ ∶ X → Y s.t. ∆(gx) = δ(g)∆(x).

▸ orbit equivalent: ∃ a measure preserving isomorphism ∆ ∶ X → Y s.t. ∆(Γx) = Λ∆(x).
▸ W∗-equivalent: L∞(X ) ⋊ Γ ≅ L∞(Y ) ⋊ Λ.

We have conjugacy ↝ orbit equivalence ↝ W∗-equivalence.

Remark. At each step information gets lost ↝ natural rigidity questions.



Classification of von Neumann algebras

Problem

To what extent do L(Γ) and L∞(X ) ⋊ Γ “remember” the underlying group Γ and group action
Γ↷ (X , µ), respectively?

Remark. Γ infinite abelian Ô⇒ L(Γ) ≅ L∞(Γ̂,Haar) ≅ L∞([0,1],Leb).
Terminology. A von Neumann algebra M is a factor if M ≇M1 ⊕M2.

Proposition

▸ L(Γ) is a factor if and only if Γ has infinite conjugacy classes (icc).
Example. Wreath product groups Γ = A ≀B ∶= A(B) ⋊B, free product groups A ∗B.

▸ L∞(X ) ⋊ Γ is a factor if Γ↷ (X , µ) is free and ergodic.
Example. The Bernoulli action Γ↷ (X0, µ0)Γ defined by g ⋅ (xh)h∈Γ = (xg−1h)h∈Γ.

Murray and von Neumann, 1936-1943:

1 ∃! approximately fin. dim. factor R =⊗n∈NM2(C)
weakly

(the hyperfinite II1 factor).
2 L(F2) ≇ R, where F2 is the free group on two generators.



The amenable case

Definition

A group Γ is amenable if its left regular representation admits almost invariant vectors, i.e.
there is a sequence of unit vectors (ξn)n ⊂ ℓ2(Γ) such that ∥λg(ξn) − ξn∥2 → 0, for any g ∈ Γ.
Examples. Solvable (e.g. abelian) groups.

Remark. To see that Z is amenable, take ξn = 1√
n
1{1,2,...,n} ∈ ℓ2(Z) and note that

∥λm(ξn) − ξn∥22 = 2m
n → 0 as n →∞, for any m ∈ Z.

Theorem (Connes, 1976)

▸ L(Γ) ≅ R, for every icc amenable group Γ.

▸ L∞(X ) ⋊ Γ ≅ R, for every free ergodic action Γ↷ (X , µ) of an infinite amenable group.

Remark.
▸ Striking lack of rigidity: any info of Γ is lost when passing to von Neumann algebras.
▸ The classification of amenable C∗-algebras is still very active (Stuart White, Wilhelm

Winter, etc.).



The non-amenable case

Definition

A group Γ has Kazhdan’s property (T) if any unitary representation of Γ with almost
invariant vectors has non-zero invariant vectors.

Examples. Lattices in higher rank simple Lie groups, e.g. SLn(Z),n ≥ 3.

Connes, 1980: If Γ is an icc property (T) groups, then any automorphism of L(Γ) that is
close to the identity is inner.

Connes’ rigidity conjecture, 1980s

If Γ and Λ are icc property (T) groups with L(Γ) ≅ L(Λ), then Γ ≅ Λ.

Cowling-Haagerup, 1989: If Γ < Sp(m,1) and Λ < Sp(n,1) are uniform lattices such that
L(Γ) ≅ L(Λ), then m = n.
Popa’s strong rigidity theorem, 2004: If Gi = Z/2Z ≀ Γi where Γi is an icc property (T)
group for any i ∈ {1,2} with L(G1) ≅ L(G2), then G1 ≅ G2.



Popa’s deformation/rigidity theory and W∗-superrigidity

Definition

A group Γ is called W∗-superrigid if whenever L(Γ) ≅ L(Λ) for some group Λ, then Γ ≅ Λ.

Remark. Property (T) is a group von Neumann algebra invariant: if L(Γ) ≅ L(Λ) with Γ has
property (T), then Λ has property (T) as well.
Connes’ rigidity conjecture, 1980s: Any icc property (T) group Γ is W∗-superrigid.
▸ Famous open problem (e.g. Γ = PSL3(Z)).

Popa’s deformation/rigidity theory (2001-)

General idea: Study von Neumann algebras M that have a

▸ deformation property (e.g. Aut(M) is large).
▸ rigidity property (e.g. M = L(Σ ≀ Γ), where Γ has property (T)).

Combine these properties to derive structural results for M.

▸ Led to spectacular progress in the theory of von Neumann algebras and orbit equivalence.
▸ In particular, it led to the first examples of W∗-superrigid groups.



W∗-superrigidity: examples

The generalized wreath product group Σ ≀I Γ is Σ(I) ⋊σ Γ, where Γ↷ I and
σg((xi)i∈I ) = (xg−1i)i∈I .

Examples of W∗-superrigid groups

Ioana-Popa-Vaes, 2010: Certain generalized wreath product groups (Γ = Z/2Z ≀K/B K ).
Berbec-Vaes, 2012: Left-right wreath product groups Z/2Z ≀Fn (Fn × Fn).
Chifan-Ioana, 2017: Certain amalgamated free product groups (Γ = Γ1 ∗Σ Γ2).
Chifan-Diaz-D, 2020: Iterations of certain amalgamated free product groups and
HNN-extension groups (e.g. Γ = Γ1 ∗Σ Γ2 ∗Σ ⋅ ⋅ ⋅ ∗Σ Γn) are W∗-superrigid.
Chifan-Ioana-Osin-Sun, 2021: The first examples of icc property (T) groups that are
W∗-superrigid.



W∗-superrigidity: functorial results

Question

Is the W∗-superrigidity property closed with respect to direct products?
↝ Yes, if the groups are wreath product groups.

Theorem (D, 2020)

If Γ1 and Γ2 are W∗-superrigid wreath product groups, then Γ1 × Γ2 is W∗-superrigid.

▸ Main ingredient (product rigidity result):
Let Γ1,Γ2 be non-amenable wreath product groups and Λ any group for which
L(Γ1 × Γ2) ≅ L(Λ). Then Λ = Λ1 × Λ2 such that L(Γ1) ≅ L(Λ1) and L(Γ2) ≅ L(Λ2).

Theorem (Chifan-Diaz-D, 2021)

Let Γ be an icc property (T) hyperbolic group. If A is any W∗-superrigid group, then the
left-right wreath product group A ≀Γ (Γ × Γ) is W∗-superrigid.



Superrigidity for graph product groups, I

Graph product groups (Green, 1990)

Let G = (V ,E ) be a finite simple graph. To any family of groups {Γv}v∈V , one can naturally
associate the so-called graph product group G {Γv}v∈V .

▸ G {Γv}v∈V = ×v∈V Γv if G is complete.

▸ G {Γv}v∈V = ∗v∈V Γv if G has no edges.

Question

Does there exist a non-trivial graph product group that is W∗-superrigid?



Superrigidity for graph product groups, II

Theorem (Chifan-Davis-D, 2023)

For certain graph product groups Γ = G {Γv}v∈V , where G is a flower shaped graph, the
following holds: if L(Γ) ≅ L(Λ), where Λ is any non-trivial graph product group whose vertex
groups are infinite, then Γ ≅ Λ.

Figure: Flower shaped graph



Future questions

Problem

Identify new group constructions that are “recognizable” at the von Neumann algebra level.

Problem

1 Prove that L(PSLn(Z)) ≇ L(PSLm(Z)), whenever m ≠ n.
2 Show that PSLn(Z) with n ≥ 3 is W∗-superrigid.



W∗-superrigidity for group actions

Consider the Bernoulli action Γ↷ (X0, µ0)Γ defined by g ⋅ (xh)h∈Γ = (xg−1h)h∈Γ.
▸ If Γ is amenable, then L∞(X0)Γ ⋊ Γ is isomorphic to the hyperfinite II1 factor R.

Popa’s strong rigidity theorem, 2004

Let Γ be a non-amenable icc group and Γ↷ (X , µ) a Bernoulli action. Let Λ be a property (T)
group and Λ↷ (Y , ν) a free ergodic action.
If L∞(X ) ⋊ Γ ≅ L∞(Y ) ⋊ Λ, then Γ ≅ Λ and the actions are conjugate.

Definition

A group action Γ↷ (X , µ) is called W∗-superrigid if whenever L∞(X ) ⋊ Γ ≅ L∞(Y ) ⋊ Λ for
some free ergodic action Λ↷ (Y , ν), then Γ ≅ Λ and the actions are conjugate.

Theorem (Popa, 2003; Ioana, 2010; Ioana-Popa-Vaes, 2010)

If Γ is an icc non-amenable group such that Γ has property (T) or Γ = Γ1 × Γ2, then any
Bernoulli action Γ↷ (X0, µ0)Γ is W∗-superrigid.



W∗-superrigidity for actions on the hyperbolic plane

Consider the transitive infinite measure preserving action PSL2(R)↷ H2 = {z ∈ C∣ Imz > 0} on
the hyperbolic plane by fractional transformations:

(a b
c d

) ⋅ z = az + b
cz + d .

Theorem (D-Vaes, 2021)

Let Γ = PSL2(Z[S−1]), where S is a finite set of primes. The following hold:

1 If S = ∅, then Γ↷ H2 admits a fundamental domain.

2 If ∣S ∣ = 1, then L∞(H2) ⋊ Γ ≅ L∞(Y ) ⋊ Λ for uncountably many non-isomorphic Λ.

3 If ∣S ∣ ≥ 2, then Γ↷ H2 is W∗-superrigid: if L∞(H2) ⋊ Γ ≅ L∞(Y ) ⋊ Λ, we essentially have
Γ ≅ Λ and the actions are conjugate.

▸ The first natural families of infinite measure preserving actions that are W∗-superrigid.


