Rigidity theory for von Neumann algebras

Daniel Drimbe

KU Leuven

Brussels Summer School of Mathematics Université Libre de Bruxelles August 31, 2023

Operator algebras

For a Hilbert space \mathcal{H} and a linear map $T : \mathcal{H} \to \mathcal{H}$, we denote by ||T|| its norm. Recall that $||T|| = \sup\{||T\xi|| | \xi \in \mathcal{H}, ||\xi|| \le 1\}$. The set $B(\mathcal{H}) = \{T : \mathcal{H} \to \mathcal{H} \text{ is a linear map } |||T|| < \infty\}$ is called **the set of bounded** operators on \mathcal{H} .

Definition

We consider *-subalgebras $M \subset B(\mathcal{H})$, where the *-operation is the Hermitian adjoint.

- ► C*-algebras: norm closed *-subalgebras of B(H).
 ~ Unital commutative C*-algebras are of the form C(X) where X is compact Hausdorff.
- von Neumann algebras: weakly closed *-subalgebras of $B(\mathcal{H})$.
 - $\rightsquigarrow T_i \rightarrow T$ weakly if and only if $\langle T_i \xi, \eta \rangle \rightarrow \langle T \xi, \eta \rangle$, for all $\xi, \eta \in \mathcal{H}$.

 \sim Commutative von Neumann algebras are of the form $L^{\infty}(X,\mu)$ where (X,μ) is a measure space.

Close connections to group theory, representation theory, (continuous and measurable) dynamical systems, quantum information theory, etc.

A *-subalgebra $M \subset B(\mathcal{H})$ is a **von Neumann algebra** if it is closed in the weak operator topology.

Examples

- $B(\mathcal{H})$, where \mathcal{H} is a Hilbert space.
- ② $L^{\infty}(X) \subset B(L^{2}(X))$, where (X, μ) is a measure space.
- On The commutant A' := {x ∈ B(H) | xa = ax, ∀a ∈ A} of any set A ⊂ B(H) that is closed under adjoint.

on Neumann's bicommutant theorem:

If $M \subset B(\mathcal{H})$ is a unital *-algebra, then M is a von Neumann algebra if and only if M = (M')'.

Discrete groups and operator algebras

Group C*-algebras and group von Neumann algebras

Let Γ be a countable (discrete) group.

- The left regular representation $\lambda : \Gamma \to \mathcal{U}(\ell^2(\Gamma)): (\lambda_g \xi)(h) = \xi(g^{-1}h).$
- The group algebra $\mathbb{C}[\Gamma]$ is the linear span of $\{\lambda_g\}_{g\in\Gamma}$ and note that $\mathbb{C}[\Gamma] \subset B(\ell^2(\Gamma))$.
- Take the norm closure: (reduced) group C^{*}-algebra $C_r^*(\Gamma)$.
- Take the weak closure: group von Neumann algebra $L(\Gamma)$.

We have $\mathbb{C}[\Gamma] \subset C_r^*(\Gamma) \subset L(\Gamma)$.

Remark. At each inclusion, information gets lost ~ natural rigidity questions.

Open problems

- Free group factor problem: is $L(\mathbb{F}_n) \notin L(\mathbb{F}_m)$ if $n \neq m$?
- ▶ Connes' rigidity conjecture: is $L(PSL_n(\mathbb{Z})) \notin L(PSL_m(\mathbb{Z}))$ if $n \neq m$?

The structure and classification of operator algebras is highly non-trivial.

Dynamical systems and operator algebras

Measurable dynamics and von Neumann algebras

A measure preserving action $\Gamma \curvearrowright (X, \mu)$ gives rise to a von Neumann algebra $L^{\infty}(X) \rtimes \Gamma$.

- This von Neumann algebra contains $L^{\infty}(X)$ as a subalgebra.
- ▶ It contains Γ as unitary elements $\{u_g\}_{g\in\Gamma}$ and encode the group action: $u_g F u_g^* = g \cdot F$.

Orbit equivalence and W*-equivalence

Two measure preserving actions $\Gamma \curvearrowright (X, \mu)$ and $\Lambda \curvearrowright (Y, \nu)$ are called:

- **conjugate:** \exists a group isomorphism $\delta : \Gamma \to \Lambda$ and a measure preserving isomorphism $\Delta : X \to Y$ s.t. $\Delta(gx) = \delta(g)\Delta(x)$.
- orbit equivalent: \exists a measure preserving isomorphism $\Delta : X \to Y$ s.t. $\Delta(\Gamma x) = \Lambda \Delta(x)$.
- **W**^{*}-equivalent: $L^{\infty}(X) \rtimes \Gamma \cong L^{\infty}(Y) \rtimes \Lambda$.

We have conjugacy \rightsquigarrow orbit equivalence \rightsquigarrow W^{*}-equivalence.

Remark. At each step information gets lost ~ natural rigidity questions.

Problem

To what extent do $L(\Gamma)$ and $L^{\infty}(X) \rtimes \Gamma$ "remember" the underlying group Γ and group action $\Gamma \curvearrowright (X, \mu)$, respectively?

Remark. Γ infinite abelian $\implies L(\Gamma) \cong L^{\infty}(\widehat{\Gamma}, \text{Haar}) \cong L^{\infty}([0,1], \text{Leb}).$ **Terminology.** A von Neumann algebra M is a **factor** if $M \notin M_1 \oplus M_2$.

Proposition

- L(Γ) is a factor if and only if Γ has infinite conjugacy classes (icc).
 Example. Wreath product groups Γ = A ≥ B := A^(B) ⋊ B, free product groups A ★ B.
- $L^{\infty}(X) \rtimes \Gamma$ is a factor if $\Gamma \curvearrowright (X, \mu)$ is free and ergodic. **Example.** The **Bernoulli action** $\Gamma \curvearrowright (X_0, \mu_0)^{\Gamma}$ defined by $g \cdot (x_h)_{h \in \Gamma} = (x_{g^{-1}h})_{h \in \Gamma}$.

Murray and von Neumann, 1936-1943:

- **9** \exists ! approximately fin. dim. factor $R = \overline{\bigotimes_{n \in \mathbb{N}} \mathbb{M}_2(\mathbb{C})}^{\text{weakly}}$ (the hyperfinite II₁ factor).
- **2** $L(\mathbb{F}_2) \notin R$, where \mathbb{F}_2 is the free group on two generators.

The amenable case

Definition

A group Γ is **amenable** if its left regular representation admits almost invariant vectors, i.e. there is a sequence of unit vectors $(\xi_n)_n \subset \ell^2(\Gamma)$ such that $\|\lambda_g(\xi_n) - \xi_n\|_2 \to 0$, for any $g \in \Gamma$. **Examples.** Solvable (e.g. abelian) groups. **Remark.** To see that \mathbb{Z} is amenable, take $\xi_n = \frac{1}{\sqrt{n}} \mathbf{1}_{\{1,2,\dots,n\}} \in \ell^2(\mathbb{Z})$ and note that $\|\lambda_m(\xi_n) - \xi_n\|_2^2 = \frac{2m}{n} \to 0$ as $n \to \infty$, for any $m \in \mathbb{Z}$.

Theorem (Connes, 1976)

- $L(\Gamma) \cong R$, for every icc amenable group Γ .
- $L^{\infty}(X) \rtimes \Gamma \cong R$, for every free ergodic action $\Gamma \curvearrowright (X, \mu)$ of an infinite amenable group.

Remark.

- Striking lack of rigidity: any info of Γ is lost when passing to von Neumann algebras.
- The classification of amenable C*-algebras is still very active (Stuart White, Wilhelm Winter, etc.).

Definition

A group Γ has **Kazhdan's property (T)** if any unitary representation of Γ with almost invariant vectors has non-zero invariant vectors.

Examples. Lattices in higher rank simple Lie groups, e.g. $SL_n(\mathbb{Z}), n \ge 3$.

Connes, 1980: If Γ is an icc property (T) groups, then any automorphism of $L(\Gamma)$ that is close to the identity is inner.

Connes' rigidity conjecture, 1980s

If Γ and Λ are icc property (T) groups with $L(\Gamma) \cong L(\Lambda)$, then $\Gamma \cong \Lambda$.

Cowling-Haagerup, 1989: If $\Gamma < Sp(m, 1)$ and $\Lambda < Sp(n, 1)$ are uniform lattices such that $L(\Gamma) \cong L(\Lambda)$, then m = n.

Popa's strong rigidity theorem, 2004: If $G_i = \mathbb{Z}/2\mathbb{Z} \wr \Gamma_i$ where Γ_i is an icc property (T) group for any $i \in \{1, 2\}$ with $L(G_1) \cong L(G_2)$, then $G_1 \cong G_2$.

Popa's deformation/rigidity theory and W*-superrigidity

Definition

A group Γ is called **W**^{*}-superrigid if whenever $L(\Gamma) \cong L(\Lambda)$ for some group Λ , then $\Gamma \cong \Lambda$.

Remark. Property (T) is a group von Neumann algebra invariant: if $L(\Gamma) \cong L(\Lambda)$ with Γ has property (T), then Λ has property (T) as well.

Connes' rigidity conjecture, 1980s: Any icc property (T) group Γ is W^{*}-superrigid.

Famous open problem (e.g. $\Gamma = PSL_3(\mathbb{Z})$).

Popa's deformation/rigidity theory (2001-)

General idea: Study von Neumann algebras M that have a

- deformation property (e.g. Aut(M) is large).
- ▶ **rigidity property** (e.g. $M = L(\Sigma \wr \Gamma)$, where Γ has property (T)).

Combine these properties to derive structural results for M.

- ▶ Led to spectacular progress in the theory of von Neumann algebras and orbit equivalence.
- ▶ In particular, it led to the first examples of W*-superrigid groups.

The generalized wreath product group $\Sigma \wr_I \Gamma$ is $\Sigma^{(I)} \rtimes_{\sigma} \Gamma$, where $\Gamma \curvearrowright I$ and $\sigma_g((x_i)_{i \in I}) = (x_{g^{-1}i})_{i \in I}$.

Examples of W*-superrigid groups

Ioana-Popa-Vaes, 2010: Certain generalized wreath product groups $(\Gamma = \mathbb{Z}/2\mathbb{Z} \wr_{K/B} K)$. **Berbec-Vaes, 2012:** Left-right wreath product groups $\mathbb{Z}/2\mathbb{Z} \wr_{\mathbb{F}_n} (\mathbb{F}_n \times \mathbb{F}_n)$. **Chifan-Ioana, 2017:** Certain amalgamated free product groups $(\Gamma = \Gamma_1 *_{\Sigma} \Gamma_2)$. **Chifan-Diaz-D, 2020:** Iterations of certain amalgamated free product groups and HNN-extension groups (e.g. $\Gamma = \Gamma_1 *_{\Sigma} \Gamma_2 *_{\Sigma} \cdots *_{\Sigma} \Gamma_n$) are W*-superrigid. **Chifan-Ioana-Osin-Sun, 2021:** The first examples of icc property (T) groups that are W*-superrigid.

Question

Is the W*-superrigidity property closed with respect to direct products? \rightsquigarrow Yes, if the groups are wreath product groups.

Theorem (D, 2020)

If Γ_1 and Γ_2 are W^{*}-superrigid wreath product groups, then $\Gamma_1 \times \Gamma_2$ is W^{*}-superrigid.

Main ingredient (product rigidity result):
 Let Γ₁, Γ₂ be non-amenable wreath product groups and Λ any group for which
 L(Γ₁ × Γ₂) ≅ L(Λ). Then Λ = Λ₁ × Λ₂ such that L(Γ₁) ≅ L(Λ₁) and L(Γ₂) ≅ L(Λ₂).

Theorem (Chifan-Diaz-D, 2021)

Let Γ be an icc property (T) hyperbolic group. If A is any W^{*}-superrigid group, then the left-right wreath product group $A \wr_{\Gamma} (\Gamma \times \Gamma)$ is W^{*}-superrigid.

Graph product groups (Green, 1990)

Let $\mathscr{G} = (\mathscr{V}, \mathscr{E})$ be a finite simple graph. To any family of groups $\{\Gamma_{\nu}\}_{\nu \in \mathscr{V}}$, one can naturally associate the so-called **graph product group** $\mathscr{G}\{\Gamma_{\nu}\}_{\nu \in \mathscr{V}}$.

- $\mathscr{G}{\{}\Gamma_{v}{\}_{v\in\mathscr{V}}} = \times_{v\in\mathscr{V}}\Gamma_{v}$ if \mathscr{G} is complete.
- $\mathscr{G}{\{\Gamma_v\}_{v\in\mathscr{V}} = *_{v\in\mathscr{V}}\Gamma_v \text{ if } \mathscr{G} \text{ has no edges.}}$

Question

Does there exist a non-trivial graph product group that is W*-superrigid?

Superrigidity for graph product groups, II

Theorem (Chifan-Davis-D, 2023)

For certain graph product groups $\Gamma = \mathscr{G}{\{\Gamma_v\}_{v \in \mathscr{V}}}$, where \mathscr{G} is a flower shaped graph, the following holds: if $L(\Gamma) \cong L(\Lambda)$, where Λ is any non-trivial graph product group whose vertex groups are infinite, then $\Gamma \cong \Lambda$.

Figure: Flower shaped graph

Problem

Identify new group constructions that are "recognizable" at the von Neumann algebra level.

Problem

- **O** Prove that $L(PSL_n(\mathbb{Z})) \notin L(PSL_m(\mathbb{Z}))$, whenever $m \neq n$.
- **②** Show that $PSL_n(\mathbb{Z})$ with $n \ge 3$ is W^{*}-superrigid.

W*-superrigidity for group actions

Consider the **Bernoulli action** $\Gamma \curvearrowright (X_0, \mu_0)^{\Gamma}$ defined by $g \cdot (x_h)_{h \in \Gamma} = (x_{g^{-1}h})_{h \in \Gamma}$.

• If Γ is amenable, then $L^{\infty}(X_0)^{\Gamma} \rtimes \Gamma$ is isomorphic to the hyperfinite II₁ factor R.

Popa's strong rigidity theorem, 2004

Let Γ be a non-amenable icc group and $\Gamma \curvearrowright (X, \mu)$ a Bernoulli action. Let Λ be a property (T) group and $\Lambda \curvearrowright (Y, \nu)$ a free ergodic action. If $L^{\infty}(X) \rtimes \Gamma \cong L^{\infty}(Y) \rtimes \Lambda$, then $\Gamma \cong \Lambda$ and the actions are conjugate.

Definition

A group action $\Gamma \curvearrowright (X, \mu)$ is called **W**^{*}-superrigid if whenever $L^{\infty}(X) \rtimes \Gamma \cong L^{\infty}(Y) \rtimes \Lambda$ for some free ergodic action $\Lambda \curvearrowright (Y, \nu)$, then $\Gamma \cong \Lambda$ and the actions are conjugate.

Theorem (Popa, 2003; Ioana, 2010; Ioana-Popa-Vaes, 2010)

If Γ is an icc non-amenable group such that Γ has property (T) or $\Gamma = \Gamma_1 \times \Gamma_2$, then any Bernoulli action $\Gamma \curvearrowright (X_0, \mu_0)^{\Gamma}$ is W^{*}-superrigid.

W*-superrigidity for actions on the hyperbolic plane

Consider the transitive infinite measure preserving action $PSL_2(\mathbb{R}) \curvearrowright \mathbb{H}^2 = \{z \in \mathbb{C} | \text{Im} z > 0\}$ on the hyperbolic plane by fractional transformations:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot z = \frac{az+b}{cz+d}$$

Theorem (D-Vaes, 2021)

Let $\Gamma = PSL_2(\mathbb{Z}[S^{-1}])$, where S is a finite set of primes. The following hold:

1 If $S = \emptyset$, then $\Gamma \curvearrowright \mathbb{H}^2$ admits a fundamental domain.

2 If |S| = 1, then $L^{\infty}(\mathbb{H}^2) \rtimes \Gamma \cong L^{\infty}(Y) \rtimes \Lambda$ for uncountably many non-isomorphic Λ .

● If $|S| \ge 2$, then $\Gamma \curvearrowright \mathbb{H}^2$ is W^{*}-superrigid: if $L^{\infty}(\mathbb{H}^2) \rtimes \Gamma \cong L^{\infty}(Y) \rtimes \Lambda$, we essentially have $\Gamma \cong \Lambda$ and the actions are conjugate.

▶ The first natural families of infinite measure preserving actions that are W*-superrigid.